Overview

Module Handbook

for the master's programme

Digitalization & Sustainability in Materials Science & Engineering

At the University of Bayreuth

Module XY: Module Name

Responsibility	Responsible department for the module				
Content	Description of the contents of the module.				
Qualification objective	Description of the qualification objective obtained through the module.				
Prerequisites	Modules or kno	wledge required fo	or participation in th	e module	
Possible inclusion in curriculum	Specification of	the semester from	which the module of	can be taken.	
Subject area	Assignment of t	he module to a fiel	ld of study.		
Frequency	Information on the frequency of the module. Annual: periodically either in the winter or summer semester.				
Duration	Number of sem	esters required for	the module.		
Overview and credits	Identification	Course	SWS ¹	LP	
	XY1	Course 1	$nV^2 + n\ddot{U}^3 + nP^4$	LP ⁵	
	XY2	Course 2	nV + nÜ + nP	LP	
	Total Total Total LP				
Examination	Type of module examination according to the study and examination regulations.				
Student workload	Workload calculated for the completion of a module. Usually divided into attendance time and self-study and exam preparation				
Assignment to Curriculum	Specification of	the degree progra	ms in which the mo	dule is used.	

 ¹ Semester hours per week
 ² Lecture
 ³ Exercise lesson
 ⁴ Practical course

⁵ Credit Points

Table of Contents

Module BFM	4
Module BIM	5
Module BM	7
Module BMB	8
Module BMM	10
Modul CKM	12
Modul CLM	13
Modul CMC	15
Modul CRM	17
Modul DSP	19
Modul EM	20
Modul ERT	22
Modul FSET	23
Modul HE	25
Modul IE	27
Modul MA	
Modul MI	
Modul MS	
Modul MT	29
Modul NAS	
Modul PIB	
Modul PM	40
Modul PML	42
Modul PoE	44
Modul PS	46
Modul RM1	48
Modul RM2	49
Modul SEC	50
Modul SPM	51

Modules in alphabetical order

Module BFM: Biomaterials and Biofabrication MOOC

Responsibility	Chair of Biomaterials				
Content	Key concepts in biomaterials and medical devices; clinical testing and quality assurance; key concepts and challenges in the field of tissue engineering; key concepts in biofabrication; how to develop products to solve biomedical problems; current trends in the field of biofabrication.				
Qualification objective	In-depth knowledge of the properties of biomaterials and medical devices; overview of concepts and challenges in biomedical engineering; overview of biofabrication concepts; acquisition of methodological skills for the development of new biomaterials and products for biomedical use; overview of current developments in the field of biofabrication.				
Prerequisites	Basics in biology, chemistry and physics equivalent to a university degree (Bachelor of Science)				
Possible inclusion in curriculum	In the second or third semester				
Subject area	Focus area: "Sustainable Applications & Processes for Materials"				
Frequency	Every semester	r			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	Biomaterials and BFM Biofabrication 3V 5LP MOOC				
		Total:	3V	5LP	
Examination	Written exam				
Student workload	 o 45 h Online course o 105 h Self-study and examination preparation BFM total: 150 h 				
Assignment to Curriculum	DSMSE (M.Sc.)	Biofabrication (M.S	C.)		

Module BIM: Biomimetics

Responsibility	Chair of Biomat	Chair of Biomaterials, Chair of Biomechanics				
Content	Design principles of nature, selected examples of materials, structures, surface effects, resistance reduction, etc. as inspiration for biomimetic technical applications. Sustainable aspects in technical developments. Introduction to optimization algorithms, Self-X materials, energetic aspects; introduction to concepts of technical implementation and practical application based on selected examples.					
Qualification objective	Basic understanding of natural design principles, structures and concepts and their possible transfer to technical applications; acquisition of an introductory overview of the fields of bioinspired engineering; methodological competence in the selection of suitable materials, concepts and processes for the transfer of natural principles to biomimetic technical applications; acquisition of systematic decision-making competence with regard to possible technical applications.					
Prerequisites	General knowledge in the fields of engineering and materials science.					
Possible inclusion in curriculum	Second or third semester					
Subject area	Focus area: "Sustainable Applications & Processes for Materials"					
Frequency	BIM1: Periodically in the winter semester BIM2: Currently every semester, preference: summer semester					
Duration	2 semester					
Overview and credits	Identification	Course	SWS	LP		
	Biomimetics & BIM1 Bio-inspired 1V + 2P Materials 1					
	BIM2 Bio-inspired 1V 2LP Materials 2					
	Total: 2V+ 2P 5LF					
Examination	Written exam (mark weighting 1/1), Contribution in the form of practical course reports (not graded)					
Student workload	BIM1: o 45 h Attendance time					

	o 45 h Self-study and examination preparation
	BIM1 total: 90 h
	BIM2:
	o 15 h Attendance time
	o 45 h Self-study and examination preparation
	BIM2 total: 60 h
	BIM total: 150 h
Assignment to Curriculum	Sporttechnologie (M.Sc.), DSMSE (M.Sc.)

Module BM: Battery Materials 1

Responsibility	Chair of Inorganic Active Materials for Electrochemical Energy Storage				
	Chair of Inorganic Colloids for Electrochemical Energy Storage				
Content	Introduction to energy storage technologies, battery definitions and concepts, fundamentals of solid-state chemistry and material chemical concepts in the field of electrode processes and reactions, phase diagrams, cathode, and anode materials (focus on electronic and crystal structure, synthesis, reactivity, and stability), introduction to common separators and electrolytes.				
Qualification objective	Interdisciplinary acquisition of competence in the field of battery materials. The students will learn about the synthesis, structure, and electrochemical properties of the most important electrode materials on the market, as well as those in the research stage. The course will focus on active materials.				
Prerequisites	None				
Possible inclusion in curriculum	Second or third semester				
Subject area	Focus area: "Su	istainable Applicatio	ons & Processes fo	r Materials"	
Frequency	Every semester				
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	BM	Battery Materials	3V + 1Ü	5LP	
	Total: 3V+1Ü 5LP				
Examination	Written or oral exam				
Student workload	 o 60 h Attendance time o 90 h Self-study and examination preparation BM total: 150 h 				
Assignment to Curriculum	DSMSE (M.Sc.)	Battery Materials a	nd Technology (M.	Sc.)	

Module BMB: Biomaterials and Biocomponents

Responsibility	Chair of Bioma	terials			
Content	Materials science across material classes, biopolymers, composite materials, and hybrid materials; properties of biomaterials and biomineralization processes, biocompatibility, and material-cell interaction; testing methods; concepts for the development of new biomaterials; overview of the structure and function of macromolecules, design principles in nature; applications in nanotechnology, pharmacology/medical engineering, materials science, and industry.				
Qualification objective	Acquisition of knowledge about material science across material classes, natural macromolecules, and biopolymers; acquisition of a comprehensive overview of the properties of biomaterials and their processing; material-cell interactions; acquisition of method competence for the analysis of biomaterials and bio-components; acquisition of decision-making competence with regard to possible technical applications.				
Prerequisites	Knowledge to the extent of a university bachelor's degree program, especially in the fields of biology, chemistry and physics.				
Possible inclusion in curriculum	First or second semester				
Subject area	Compulsory elective area: "Materials Science"				
Frequency	Periodically in	the summer semester			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	BMB1	Biomaterials	2V	3LP	
	Biocomponents & BMB2 Natural Composite 1V 2LP Materials				
	Total: 3V 5LP				
Examination	Written exam				
Student workload	BMB1: o 30 h Attendance time o 60 h Self-study and examination preparation BMB1 total: 90 h				

	BMB2:
	 15 h Attendance time
	o 45 h Self-study and examination preparation
	BMB2 total: 60 h
	BMB total: 150 h
Assignment to Curriculum	DSMSE (M.Sc.), Biotechnologie und chemische Verfahrenstechnik (M. Sc.)

Module BMM: Basics of Metallic Materials

Responsibility	Chair of Metals and Alloys				
Content	Introduction to melting, re-melting and casting processes and theoretical aspects of heat treatments; overview and selection criteria for metallic materials in the chemical industry and power engineering. Extension of knowledge in alloy composition and its effect on mechanical properties and oxidation and corrosion behavior. Failure analysis (theory and practice).				
Qualification objective	Understanding of phases and states of metallic materials in the molten and solidified state as well as processes at their interfaces; modeling approaches for the simulation of these processes; mastering the basics of failure analysis in the chemical industry and power engineering, determining criteria for material selection, overview of possible causes of damage and their prevention, understanding between material selection and material requirements.				
Prerequisites	General knowledge in the fields of engineering and materials science.				
Possible inclusion in curriculum	First or second semester				
Subject area	Compulsory ele	ective area: "Materia	ls Science"		
Frequency	Periodically in t	the winter semester			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	BMM1	Metals and Alloys: Liquid, Solid, Interfaces	1V	2LP	
	Metals and BMM2 Alloys: Material 1V + 1P Selection				
	Total: 2V + 1P				
Examination	Portfolio examination: Oral examination (mark weighting 1/1). Contribution in the form of practical course reports (not graded).				
Student workload	BMM1: o 15 h Attendance time				

	o 45 h Self-study and examination preparation		
	BMM1 total: 60 h		
	BMM2:		
	o 30 h Attendance time		
	o 60 h Self-study and examination preparation		
	BMM2 total: 90 h		
	BMM total: 150 h		
Assignment to Curriculum	DSMSE (M.Sc.)		

Module CKM: Connected Knowledge in Materials Science

Responsibility	Study program	Study programme moderator			
Content	Relationships between physical and chemical mechanisms in different classes of materials; kinetic and thermodynamic principles.				
Qualification objective	In-depth understanding of fundamental interrelationships, ability to think in a networked way in the field of materials science and materials engineering. Assessment skills with regard to materials and their material characteristics as well as materials engineering processes.				
Prerequisites	General knowledge in the fields of engineering and materials science.				
Possible inclusion in curriculum	First semester				
Subject area	Compulsory area: "Connected Knowledge in Materials Science"				
Frequency	Every semester				
Duration	1 semester				
Overview and credits	Identification Course SWS LP				
	CKM Connected Knowledge in Materials Science 4V 7LP				
		Total:	4V	7LP	
Examination	Written exam				
Student workload	o 60 h Attendance timeo 150 h Self-study and examination preparationCKM total: 210 h				
Assignment to Curriculum	DSMSE (M.Sc.)				

Module CLM: Carbon & Life Cycle Management

Responsibility	Chair of Polymer Engineering					
	(with chair of Ec	ological Resource To	echnology)			
Content	Carbon Manage	ment (CLM1):				
	Background and initial situation, e.g. global warming, based on global natural and anthropogenic factors. Carbon balance. Options for managing carbon-based flows such as avoidance, reduction, modified feedstocks, and offsetting. Calculation and accounting fundamentals for product-related carbon footprints with examples from industrial practice in plastics. Cost implications and industrial feasibility.					
	Life Cycle Mana	gement (CLM2):				
	Planetary boundaries and planetary crises in addition to climate change as the baseline. Evaluation using the Life Cycle Assessment (LCA) method with the phases Goal & Scope, Life Cycle Inventory, Life Cycle Impact Assessment, Interpretation & Analysis. Consideration of the product life stages of raw material extraction, production, use and end of life, including recycling flows. Mathematical structure of LCA. Introduction to the use of LCA software and databases.					
Qualification objective	Knowledge for a holistic view of carbon management and the use of renewable energies. Linking industrial practice with scientific fundamentals. Based on national and international standards and regulations for Life Cycle Assessment and Life Cycle Management, students should be able to determine and evaluate LCA indicators and identify suitable improvement measures.					
Prerequisites	Advanced study skills acquired in a bachelor's degree program in natural sciences or engineering					
Possible inclusion in curriculum	First or second semester					
Subject area	Compulsory are	a: "Sustainability"				
Frequency	Periodically in the winter semester					
Duration	1 semester					
Overview and credits	s Identification Course SWS					
	CLM1	Carbon Management	2V	3LP		
	CLM2	Life Cycle Management	1V + 1Ü	2LP		

		Total:	2V + 1Ü	5LP
Examination	Written exam			
Student workload	CLM1: o 30 h Attendance tin o 60 h Self-study and CLM1 total: 90 h CLM2: o 30 h Attendance tin o 30 h Self-study and CLM2 total: 60 h CLM total: 150 h	l examinati ne		
Assignment to Curriculum	DSMSE (M.Sc.)			

Module CMC: Ceramic Matrix Composites

Responsibility	Chair of Ceramic	Chair of Ceramic Materials Engineering			
Content	Current research aspects of ceramic fiber composite materials, their fabrication, structure, properties, characterization methods and applications; design of ceramic composite structures; overview of technical fibers, structure, fabrication, properties and applications.				
Qualification objective	Specific knowledge of the properties of ceramic composites and reinforcing components; decision-making competence for application- specific selection and failure mechanisms of ceramic composites; ability to assess the application potential of reinforcing fibers.				
Prerequisites	General knowled	lge in the fields of e	ngineering and ma	aterials science.	
Possible inclusion in curriculum	First or second s	emester			
Subject area	Compulsory elec	tive area: "Materials	Science"		
Frequency	Periodically, in th	ne winter semester			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	CMC1	Ceramic Matrix Composites	2V	3LP	
	CMC2	Technical Fibers	1V + 1P	2LP	
	Total:		3V + 1P	5LP	
Examination	Oral exam				
Student workload	CMC1: o 30 h Attendance time o 60 h Self-study and examination preparation CMC1 total: 90 h CMC2: o 30 h Attendance time o 30 h Self-study and examination preparation CMC2 total: 60 h CMC2 total: 150 h				

Module CRM: Critical Raw Materials

Responsibility	Chair of Ecological Resource Technology					
Content	Critical Raw Materials (CRM1): Recent findings in the research field of resource criticality research. Case study based assessments of geological, technical, economic, environmental and social aspects of criticality. The case studies consider the assessment of supply security and resilience of established and emerging technologies, including batteries. The applied methods include the assessment of raw material criticality, the methodologies underlying the indicators, as well as methods of risk management and decision theory. Critical Raw Materials (CRM2): Focus on modeling and evaluation of selected issues in the area of resource criticality assessment, corresponding to the content of the lecture, in small groups of 1-3 students depending on the issue.					
Qualification objective	Knowledge of evaluation methods for critical raw materials from a technological, entrepreneurial, and economic point of view. Evaluation indicators for supply risks and economic importance of materials and technologies. Collection and preparation of data for own criticality assessments. Recommendations for the handling of critical raw materials from the fields of technology, circular economy, and politics.					
Prerequisites		y skills acquired in a s or engineering	bachelor's degre	e program in		
Possible inclusion in curriculum	First or second	semester				
Subject area	Focus area: "Cir	cular Economy & Su	ustainable Raw M	aterials"		
Frequency	Periodically in t	he summer semeste	er			
Duration	1 semester					
Overview and credits	Identification	Course	SWS	LP		
	CRM1Critical Raw Materials2V2LPCRM2Seminar Critical Raw Materials2S3LP					
	Total: 2V + 2S 5LP					
Examination	Portfolio examination: CRM1: Oral exam (mark weighting 2/5); CRM2: Presentation (mark weighting 1/5) and contribution or					

	written elaboration in the form of a seminar paper (mark weighting 2/5).			
Student workload	CRM1:o30 h Attendance timeo30 h Self-study and examination preparationCRM1 total: 60 hCRM2:o30 h Attendance timeo60 h SelbststudiumCRM2 total: 90 hCRM1 total: 150 h			
Assignment to Curriculum	DSMSE (M.Sc.), Materialwissenschaften und Werkstofftechnik (M.Sc.)			

Module DSP: Data Science for Polymers

Responsibility	Chair of Polymer Engineering				
Content	Students gain an insight into acquisition, analysis, and machine learning methods in the field of polymeric materials. The focus is on the formulation and processing of these. The topics of connectivity, Internet of Things (IoT), inline measurement methods and databases are covered. In addition, students are given an overview of methods of digitized material development and analysis. In addition, practical experiments are carried out on digitally supported material development and analysis with a focus on plastics processing.				
Qualification objective	Students develop an understanding of data acquisition and utilization systems in the field of plastics technology. They are able to apply methods to carry out selected material analyses and developments with digital support. In addition, they are familiar with inline measurement methods and understand the relevance of data utilization in processing.				
Prerequisites	None				
Possible inclusion in curriculum	Second or thir	d semester			
Subject area	Focus area: "D	igitalization in Mate	rials Science"		
Frequency	Periodically in	the summer semest	er		
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	DPI	Data Science for Polymers	1V + 1Ü + 3P	5LP	
		Total:	1V + 1Ü + 3P	5LP	
Examination	Portfolio examination: Written exam (mark weighting 1/1), Contribution in the form of practical course reports (not graded).				
Student workload	 o 75 h Attendance time o 75 h Self-study and examination preparation DSP total: 150 h 				
Assignment to Curriculum	DSMSE (M.Sc.)				

Responsibility Chair of Electrochemical Process Engineering Content Modern methods of solid-state analysis for the characterization of (functional) materials and layers with respect to structure and chemical composition, connection with current research in materials science, X-ray diffraction (XRD), Small-angle X-ray scattering (SAXS), but also X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). Principle and instrumental design of the different measurement techniques (sources, monochromators, detectors). Review of electrochemical fundamentals for the design of electrochemical processes; electrocatalytic principles for the development of new materials systems; introduction to common electrochemical measurement techniques; focus on applications in electrochemical energy technology, such as fuel cells, redox flow batteries, and electrochemical CO2 reduction. **Oualification** In-depth understanding of solid-state characterization methods using objective various probes (x-ray, ion, electron) and related terminology. Ability to select the most appropriate method for a given problem. Competence in the selection of appropriate electrocatalysts and the development of new electrochemical concepts; knowledge of various degradation phenomena and the ability to propose appropriate methods for their analysis and prevention. Prerequisites General knowledge in the fields of engineering and materials science. Knowledge of German is a prerequisite. (The event will be held in German.) Possible inclusion in Second or third semester curriculum Subject area Focus area: "Sustainable Applications & Processes for Materials" Frequency Yearly Duration 2 semester Overview and Identification Course SWS LP credits Methoden der FM1 2V 21 P Festkörpercharakterisierung Elektrochemische EM2 2V + 1S 3LP Verfahrenstechnik Total: 2V + 1S 5LP Examination Portfolio examination:

Module EM: Energy Materials

	EM1: written exam (mark weighting 2/5) EM2: oral or written exam (mark weighting 3/5)
Student workload	EM1:o30 h Attendance timeo30 h Self-study and examination preparationEM1 total: 60 hEM2:o30 h Attendance timeo60 h Self-study and examination preparationEM2 total: 90 hEM2 total: 90 h
Assignment to Curriculum	DSMSE (M.Sc.)

Module ERT: Environmental and Resource Technology

Responsibility	Chair of Ecological Resource Technology (Prof. Helbig) (with chair of Chemical Engineering, Prof. Jess)				
Content	 Bio geosphere Energy balance of the earth Anthropogenic material and energy flows and limitations Energy demand and stable ecosystems Sustainability product engineering Water demand and resources Production and recycling of waste Agricultural technology 				
Qualification objective	The module focuses on the earth planet and its atmosphere, on greenhouse and warming effects as well as on anthropogenic material and energy flows and their limitations. Energy and water demand, stable ecosystems and production and recycling of waste will be discussed.				
Prerequisites	Advanced study skills acquired in a Bachelor's degree program in natural sciences or engineering				
Possible inclusion in curriculum	First or second semester				
Subject area	Compulsory are	ea: "Sustainability"			
Frequency	Periodically, in	the winter semester			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	Environmental & ERT Resource 4V 5LP Technology				
	Total: 4V 5LP				
Examination	Written or oral exam or presentation or written elaboration or contribution				
Student workload	 o 60 h Attendance time o 90 h Self-study and examination preparation ERT total: 150 h 				
Assignment to Curriculum	DSMSE (M.Sc.),	Environment, Clima	te Change and He	alth (M.Sc.)	

Module FSET: Functional Materials and Systems Aspects for Energy and Environmental Technology

Responsibility	Chair of Fun	ctional Materials			
Content	Materials and their functional properties with respect to energy and environmental applications: Solid electrolyte ionic conductors, solid electrolyte fuel cells and electrolyzers, electrical characterization of materials (e.g. impedance spectroscopy), fundamentals of batteries, lithium battery materials, materials for exhaust aftertreatment (e.g. SCR catalysts, silicon (fundamentals, technology, applications, e.g. solar cells), thermoelectrics (fundamentals, materials, applications)).				
Qualification objective	Understanding of functional material properties, with particular emphasis on the use and processing of such materials in energy and environmental engineering applications, and methods for their characterization. Assessment competence and ability to (further) develop energy and environmental engineering applications.				
Prerequisites	Advanced st	udy skills. Basic knowledge in t	he field of engi	neering.	
Possible inclusion in curriculum	First or seco	nd semester			
Subject area	Compulsory	elective area: "Materials Scienc	e"		
Frequency	Periodically,	in the summer semester			
Duration	1 semester.				
Overview and credits	Identification	Course	SWS	LP	
	FSET1	Functional Materials and Systems Aspects for Energy and Environmental Technology	3V	4LP	
	FSET2 Functional Materials and Systems Aspects for Energy and Environmental Technology				
	Total: 3V + 1P 5LP				
Examination	Portfolio examination: Written or oral exam (Mark weighting 1/1), Contribution in the form of practical course reports (not graded).				
Student workload	FSET1:				

	o 45 h Attendance time
	o 75 h Self-study and examination preparation
	FSET1 total: 120 h
	FSET2:
	o 10 h Attendance time
	o 20 h Self-study and examination preparation
	FSET2 total: 30 h
	FSET total: 150 h
Assignment to Curriculum	DSMSE (M.Sc.)

Module HE: Hydrogen embrittlement: phenomenon and mechanism

Responsibility	Chair of Metals and Alloys				
Content	Types of hydrogen embrittlement, hydrogen-induced cracking, fundamental mechanisms and theories of hydrogen influence, hydrogen embrittlement features in metallic materials, practical examples of hydrogen influence on metallic structural elements in piping systems, in automotive, air and rail transportation.				
Qualification objective	Understanding the hydrogen embrittlement phenomenon, as well as knowledge of hydrogen effect on metallic materials and their mechanical properties.				
fttPrerequisites	General kno science.	wledge in the fields of engi	neering and mate	rials	
Possible inclusion in curriculum	Second or th	nird semester			
Subject area	Focus area: '	'Sustainable Applications &	Processes for Ma	terials"	
Frequency	Periodically	in the winter semester			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	HE1	Hydrogen Embrittlement: Phenomenon and Mechanism	2V + 1P	4LP	
	Seminar: Hydrogen Embrittlement: 1S 1Ll Phenomenon and Mechanism				
		Total:	2V + 1P + 1S	5LP	
Examination	Portfolio examination: HE1: oral exam (Mark weighting: 4/5) Contribution in the form of practical course reports (not graded) HE2: Presentation in the form of a seminar talk (Mark weighting 1/5)				
Student workload	HE1: • 45 h Attendance time • 75 h Self-study and examination preparation HE1 total: 120 h				

	HE2:
	o 15 h Attendance time
	o 15 h Self-study
	HE2 total: 30 h
	HE total: 150 h
Assignment to Curriculum	DSMSE (M.Sc.), Materialwissenschaften und Werkstofftechnik (M.Sc.)

Module IE: Impact Entrepreneurship – Developing Social and Ecological Innovations

Responsibility	Prof. Dr. Rebecca Preller, BWL XX: Entrepreneurial Behavior				
	Prof. Dr. Eva	Jakob, JP Social Entrepre	neurship		
Content	Students learn advanced knowledge in the field of impact entrepreneurship (i.e., solving social and/or ecological problems through innovative methods). Furthermore, they learn to develop sustainable solutions for social and/or ecological challenges. In addition to obtaining a foundation of scientifically based content on impact entrepreneurship, students learn the necessary tools and their application in practice-oriented workshop and will also be personally advised in a team by the interdisciplinary lecturers.				
Qualification objective	The aim is to connect interdisciplinary master's students from all faculties and to enable them to jointly develop solutions for social and/or ecological problems using innovative methods. Examples of these are acute and global challenges such as biodiversity loss, climate change, environmentally friendly production/additive manufacturing, nutrition and smart cities. By taking the course, sustainable, impact-oriented action can be experienced and solutions to global problems are developed. Through this course, students will not only learn a range of methods to address global challenges, but also develop a deeper understanding of these challenges, which is especially enhanced through interdisciplinary collaboration.				
Prerequisites	None.				
Possible inclusion in curriculum	First or seco	nd semester			
Subject area	Compulsory	elective area: "Social, Eco	nomic and Legal	Aspects"	
Frequency	Currently offered each semester. The module could be offered in blocks. The dates will be announced in a separate notice.				
Duration	1 semester (Vorlesung 2 SWS, Übung	2 SWS).		
Overview and credits	Identification	Course	SWS	LP	
	IE	Impact Entrepreneurship – Developing Social and Ecological Innovations	2V + 2Ü	6LP	
	Total: 2V + 2Ü 6LP				
Examination	Presentation (mark weighting 1/2). Term paper of a solution concept (mark weighting 1/2)				

Student workload	 o 40 h Attendance time o 140 h Self-study and examination preparation IE total: 180 h
Assignment to Curriculum	Business Administration (M.Sc.); Entrepreneurship & Digitalization (M.Sc.), DSMSE (M.Sc.)

Module IM: Innovation Management

Responsibility	Chair of Biomaterials Exploring the innovation management process and product development process models. Hands-on case studies to understand key concepts. Conception and creation of a trend report and product proposal.			
Content				
Qualification objective	Knowledge of product development processes and models, fundamentals of tools and methods for product development up to product launch, mastery of essential soft skills (teamwork, time management, self- and team-evaluation), fundamentals of independent project planning; training of the ability to present and discuss scientific contexts.			
Prerequisites	Advanced study ability			
Possible inclusion in curriculum	In the first or second semester			
Subject area	Compulsory elective area: "Social, Economic and Legal Aspects"			
Frequency	Frequency Yearly, periodically in the summer and winter seme			
Duration	2 semester			
Overview and credits	Identification	Course	SWS	LP
	IM1	Innovation Management 1	2V	3LP
	IM2	Innovation Management 2	2V	3LP
		Total:	4V	6LP
Examination	Portfolio examination: Contribution to seminar (3/5), written elaboration (2/5) IM1: o 30 h Attendance time o 60 h Self-study and examination preparation IM1 total: 90 h IM2: o 30 h Attendance time o 30 h Attendance time o 60 h Self-study and examination preparation IM2: 0 IM2: 0 iM2 total: 90 h			
Student workload				

	IM total: 180 h
Assignment to Curriculum	DSMSE (M.Sc.), Biofabrication (M.Sc.), Biotechnology and Process Engineering (M.Sc.)

Module MA: Master Thesis

Responsibility	Chairs of the Faculty of Engineering Science			
Content	Written report on a current topic in the field of engineering provided or co-supervised by a professor or associate professor of the Faculty of Engineering Science.			
Qualification objective	Ability to work independently on a research-relevant engineering problem; practice in written and oral presentation and communication techniques. Advanced study ability			
Prerequisites				
Possible inclusion in curriculum	Fourth semeste			
Subject area	Master Thesis			
Frequency	Every semester			
Duration	1 semester			
Overview and credits	Identification	Course	SWS	LP
	MA	Master Thesis	-	30LP
		Total:	-	30LP
Examination	Master Thesis (mark weighting 3/4) and presentation (mark weighting 1/4)			
Student workload	Modul MA total: 900 h DSMSE (M.Sc.)			
Assignment to Curriculum				

Module MI: Materials Informatics

Responsibility	Computational Materials Science				
Content	Introduction and advanced concepts of machine learning; application in materials science				
Qualification objective	Students will understand the fundamentals and advanced concepts of machine learning and be able to build machine learning models for materials.				
Prerequisites	Successful co	ompletion of the compu	ulsory module area	"Informatics"	
Possible inclusion in curriculum	Second or third semester				
Subject area	Focus area: "	Digitalization in Materi	als Science"		
Frequency	MI1: Every semester MI2: Periodically in the winter semester				
Duration	2 semester				
Overview and credits	Identification	Course	SWS	LP	
	MI1	Machine Learning in Materials Science	2V + 2Ü	3LP	
	MI2	Emerging Trends in Materials Informatics	1S	2LP	
		Total:	2V+2Ü+1S	5LP	
Examination	Portfolio examination: MI1: written or oral examination or written elaboration (mark weighting 3/5) MI2: written examination or semester tasks or contribution (mark weighting 2/5)				
Student workload	MI1:o60 h Attendance timeo30 h Self-study and examination preparationMI1 total: 90 hMI2:o15 h Attendance time				

	o 45 h Self-study and examination preparation
	MI2 total: 60 h
	MI total: 150 h
Assignment to Curriculum	DSMSE (M.Sc.)

Module MS: Materials Selection across Materials Classes

Responsibility	Chair of Electrochemical Process Engineering			
Content	Materials selection methods are taught as an integral part of the design process, taking into account all the material properties required for manufacture and the properties of a product. In addition to technical and economic aspects, the course also focuses on sustainability and energy efficiency. Concrete examples will be used to practice the application of the			
	methods learned and to prepare and present a seminar paper. Current developments will be taken into account.			
Qualification objective	Knowledge of methods for identification and evaluation of manufacturing and design-related properties of parts and products. Ability to develop requirement profiles based on general criteria and justify the selection of materials.			
Prerequisites	Advanced study ability; Knowledge to the extent of a university bachelor's degree program, especially in the fields of materials science and process engineering.			
Possible inclusion in curriculum	Second or third semester			
Subject area	Focus area: "Circular Economy & Sustainable Raw Materials"			
Frequency	Periodically in the winter semester			
Duration	1 semester			
Overview and credits	Identification	Course	SWS	LP
	MS1	Materials selection across materials classes	2V	3LP
	MS2	Materials Selection and Sustainable Development	1S	2LP
		Total:	2V + 1S	5LP
Examination	Portfolio examination: Oral examination (mark weighting 2/3) and presentation in the form of a seminar talk (mark weighting1/3)			
Student workload	MS1: o 30 h Attendance time			

	o 60 h Self-study and examination preparation		
	MS1 total: 90 h		
	MS2:		
	o 15 h Attendance time		
	o 45 h Self-study and examination preparation		
	MS2 total: 60 h		
	MS total: 150 h		
Assignment to Curriculum	DSMSE (M.Sc.)		

Module NAS: Numerical Methods and Applied Statistics

Responsibility	Chair of Electrode Design of Electrochemical Energy Systems			
Content	NAS1: Introduction to ordinary and partial differential equations, numerical methods for solving differential equations, error analysis, interpolation, and approximation. NAS2: Introduction to probability; random variables and stochastic processes; nonlinear regression and statistics; modeling stochastic processes.			
Qualification objective	At the end of the module, students will be able to apply basic concepts of probability and statistics to support experiments and analyses in materials science. They will also be able to explain the concepts underlying random processes. Furthermore, the students will be able to describe materials using differential equations and solve them using numerical methods.			
Prerequisites	None			
Possible inclusion in curriculum	First or second	d semester		
Subject area	Compulsory ar	ea: "Informatics"		
Frequency	Every semester			
Duration	1 semester			
Overview and credits	Identification	Course	SWS	LP
	NAS1	Numerical methods	2V	2LP
	NAS2	Applied Statistics	1V+ 1Ü	3 LP
		Total:	3V+1Ü	5LP
Examination	Portfolio examination: NAS1: Written exam (Mark weighting 2/5) NAS2: Written exam (Mark weighting 3/5).			
Student workload	NAS1: o 30 h Attendance time o 30 h Self-study and examination preparation NAS1 total: 60 h NAS2:			

	o 30 h Attendance time
	o 60 h Self-study and examination preparation
	NAS2 total: 90 h
	NAS total: 150 h
Assignment to Curriculum	DSMSE (M.Sc.)

Module PIB: Polymer Interfaces and Biosensors

Responsibility	Functional Polymer Interfaces Research Group			
Content	Advanced knowledge in the scalable structuring and functionalization of surfaces, their characterization and processing for the design of target materials. Interfaces and surface modifications have a major impact on the interactions between matter and the environment. Modern functional materials are often produced by combining several (bio)polymers or by loading (bio)polymers with inorganic materials. To ensure the functionality of these hybrids, the design of the internal interfaces as well as the control of their morphology is of crucial importance. Due to their high surface-to-volume ratio, particulate systems are inherently characterized by interfaces, and polymer-based particulate systems are promising carrier materials for biological markers and the formulation of inks for bioanalytical devices and biosensors.			
	This module cor (i) Introduction and interfaces;	to chemical modific	ation of planar and	d special surfaces
	(ii) Overview of analytical methods used for structural and functional characterization of surfaces and interfaces at different levels;			
	(iii) Ink formulation and advanced fabrication methods for printing;			
	(iv) Functional biological interfaces and biosensors.			
Qualification objective	Extensive knowledge of design, material processing and characterization techniques for the targeted production of (bio)polymer-based materials for biosensors.			
Prerequisites	Advanced study ability			
Possible inclusion in curriculum	Second or third semester			
Subject area	Focus area: "Sus	tainable Applicatior	ns & Processes for	Materials"
Frequency	Periodically in the	ne winter semester		
Duration	1 semester			
Overview and credits	Identification	Course	SWS	LP
	PIB1	Polymer Interfaces & Biosensors	2V	3LP
	PIB2	Practical course in Polymer	2P	2LP

		Interfaces & Biosensors		
		Total:	2V + 2P	5LP
Examination	Written exam			
Student workload	o 60 h Self-s PIB1 total: 90 h PIB2:		on preparation	
Assignment to Curriculum	Biofabrication (N	И.Sc.), DSMSE (M.Sc	.)	

Module PM: Polymer Materials and Technology (DSMSE)

Responsibility	Chair of Macromolecular Chemistry I			
Content	With Chair of Polymer Engineering The lecture provides detailed knowledge of the basic polymer processing techniques, such as injection molding, extrusion, secondary shaping techniques, as well as general applications. In addition, basic thermal and mechanical characterization methods are reviewed. A special emphasis will be given on the relationship between processing parameters and resulting product properties. In the laboratory course the knowledge on the different processing and characterization techniques is enhanced by experiments using state- of-the-art machines and equipment. Thus, processes such as injection molding and film extrusion are performed and thermal, optical, and mechanical properties will be evaluated on the produced components.			
Qualification objective	This module will provide systematic knowledge about conventional and advanced processing technologies of polymer materials. The objective is to understand the entire process chain starting from the selection of the polymer material, the involved processing to the final component in view of the desired properties.			
Prerequisites	Fundamentals	in the field of natur	al sciences and eng	jineering
Possible inclusion in curriculum	First or second	semester		
Subject area	Compulsory el	ective area: "Materia	als Science"	
Frequency	Periodically in	the winter semester		
Duration	1 semester			
Overview and credits	Identification	Course	SWS	LP
	PM	Polymer Materials and Technology	2V + 2 P	5 LP
Examination	Portfolio examination: Oral exam (mark weighting 1/1), Contribution in the form of practical course reports (not graded).			
Student workload	 o 60 h Attendance time o 90 h Self-study and examination preparation PM total: 150 h 			

Module PML: Python and Machine Learning for Non-Programmers

Responsibility	Chair of Polyme	r Engineering (Rodri	igo Albuquerque)		
Content	Python: Introduction to the Python programming language; data and development tools; small programming projects. ML: Introduction to machine learning; machine learning concepts and small applications				
Qualification objective	By the end of this module, students will be able to use Python to read, extract, process, organize, and store data. Students will also master the basics of machine learning and be able to build simple machine learning models.				
0 <prerequisites< td=""><td>None</td><td></td><td></td><td></td></prerequisites<>	None				
Possible inclusion in curriculum	First or second semester				
Subject area	Compulsory area: "Informatics"				
Frequency	Every semester				
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	Python and data PML1 tools for Non- 1V + 3Ü 3LP Programmers				
	Machine Learning for PML2 Beginners: 1V 2LP Theory + Applications				
		Total:	2V + 3Ü	5LP	
Examination	Portfolio examination: PML1: written elaboration (Mark weighting 3/5). PML2: semester tasks or written elaboration (Mark weighting 2/5).				
Student workload	 PML2: semester tasks or written elaboration (Mark weighting 2/5). PML1: o 60 h Attendance time o 30 h Self-study and examination preparation PML1 total: 90 h 				

	PML2:		
	o 15 h Attendance time		
	o 45 h Self-study and examination preparation		
	PML2 total: 60 h		
	PML instotal: 150 h		
Assignment to Curriculum	DSMSE (M.Sc.)		

Module PoE: Principles of Entrepreneurship

Responsibility	Prof. Dr. Matthias Baum BWL XVI: Chair of Entrepreneurship und Digital Business Models				
Content	In the lecture, students learn the basic principles of entrepreneurship, get acquainted with entrepreneurial processes, learn how to conduct feasibility analyses, how to design economically sustainable business models and how corporate entrepreneurship helps established organizations to stay innovative. In the exercises part, students have to apply their knowledge and solve small case studies.				
Qualification objective	Students learn about entrepreneurial processes and entrepreneurial decision-making as well as how to create innovative ideas and how to move from such ideas to an entrepreneurial firm. Moreover, students become acquainted with the basic principles of analyzing business opportunities, designing feasible business models and what it takes to develop innovative startup companies. Students further develop competencies in performing industry and competitor analyses, designing customer oriented value propositions and get to know the basics of corporate entrepreneurship.				
Prerequisites		Previous registration is necessary. Please note the separate notices and announcements.			
Possible inclusion in curriculum	First or second se	First or second semester			
Subject area	Compulsory elect	tive area: "Social, Ecc	onomic and Lega	Aspects"	
Frequency	Currently every semester; The module might be offered as in blocks. The dates will be announced in a separate notice.				
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	PoE Principles of 2V+2Ü 6LP 6LP				
	Total: 2V + 2Ü 6LP				
Examination	Presentation (Mark weighting 1/2), written elaboration (Mark weighting 1/2).				
Student workload	 o 60 h Attendance time . o 120 h Self-study and examination preparation PoE total: 180 h 				

Assignment to Business Administration (M.Sc.), DSMSE (M.Sc.) Curriculum	
--	--

Module PS: Polymer Systems for Sustainable Applications

Responsibility	Chair of Polyme	r Engineering			
Content	 PS1: Structure, properties and methods of preparation of cellular thermoplastic polymer materials. Applications of cellular polymers with respect to their mechanical, insulating, and lightweight properties. PS2: Focus on the use of wind energy for sustainable power generation. History and physical principles of wind energy. Aerodynamics of wind turbines and derived design principles. Rotor blade design and manufacturing processes. Materials used in rotor blades (composites, adhesives, coatings). Wind turbine testing and certification. Installation, operation, and economics of wind turbines, including comparison with other forms of energy generation. 				
Qualification objective	In-depth knowledge of the property profile of thermoset and cellular, thermoplastic polymer materials depending on the manufacturing process; understanding of the possible uses of polymer materials for innovative and sustainable applications; materials engineering, technological and socio-economic fundamentals of wind energy.				
Prerequisites	General knowled	dge in the field of m	aterials science.		
Possible inclusion in curriculum	Second or third	semester			
Subject area	Focus area: "Sus	stainable Applicatior	ns & Processes for	Materials"	
Frequency	PS1: Every seme PS2: Periodically	ester / in the summer sem	nester		
Duration	1 -2 semester				
Overview and credits	Identification	Course	SWS	LP	
	PS1	MOOC "Cellular Polymers"	3V	3LP	
	PS2 Renewable Energies 1V + 1Ü 2LP				
	Total: 4V + 1Ü 5LP				
Examination	Written examination				
Student workload	PS1:				

	o 45 h Online course			
	o 45 h Self-study and examination preparation			
	PS1 total: 90 h			
	PS2:			
	o 30 h Attendance time			
	o 30 h Self-study and examination preparation			
	PS2 total: 60 h			
	PS total: 150 h			
Assignment to Curriculum	DSMSE (M.Sc.)			

Module RM1: Research Module I

Responsibility	Study progra	m moderator			
Content	The course content is related to the current research projects of the respective chair. The module includes experimental work, literature review, participation in group seminars, possibly with own presentation and/or preparation of a written report.				
Qualification objective	addition, the independent	Students should gain insight into current research practice. In addition, they should acquire experimental skills through independent laboratory work under supervision, and practice teamwork and presentation techniques.			
Prerequisites	Knowledge in to work inde	n the fields of enginee pendently.	ering and materials	science. Ability	
Possible inclusion in curriculum	Third semest	Third semester			
Subject area	Research mo	dule area			
Frequency	Every semest	er			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	RM1	Research Module I	-	6LP	
		Total:	-	6LP	
Examination	Portfolio examination: Written elaboration (Mark weighting 3/4), Presentation (Mark weighting 1/4)				
Student workload	Modul RM1 total: 180 h				
Assignment to Curriculum	DSMSE (M.So	c.)			

Module RM2: Research Module II

Responsibility	Stuy progran	n moderator			
Content	The course content is related to the current research projects of the respective chair. The module includes experimental work, literature review, participation in group seminars, possibly with own presentation and/or preparation of a written report.				
Qualification objective	addition, the independent	Students should gain insight into current research practice. In addition, they should acquire experimental skills through independent laboratory work under supervision, and practice teamwork and presentation techniques.			
Prerequisites	Knowledge in the fields of engineering and materials science. Ability to work independently.				
Possible inclusion in curriculum	Third semester				
Subject area	Research mo	dule area			
Frequency	Every semest	er			
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	RM2	Research Module II	-	6LP	
	Total: - 6LP				
Examination	Portfolio examination: Written elaboration (Mark weighting 3/4), Presentation (Mark weighting 1/4)				
Student workload	Modul RM2 total: 180 h				
Assignment to Curriculum	DSMSE (M.So	. .)			

Module SEC: Social Entrepreneurship Cases: Analyzing Social Businesses

Responsibility	Prof. Dr. Eva Jakob, JP Social Entrepreneurship				
Content	The content of the seminar will be the analysis of socially and ecologically oriented business models, the target group analysis of social businesses, the theory of change, impact measurement and the scaling of social startups / social enterprises.				
Qualification objective	In this seminar we will analyze business models of social businesses (i.e., emerging and existing companies with social and/or ecological objectives), in order to discuss challenges and success factors. After completing the module, you will be able to critically evaluate and develop business models with social and ecological effects. During the seminar you will acquire an understanding of the elements of a business model with socio-ecological goals. You will have the skill to identify the elements of a business model for an existing social business. In addition, you will be able to critically evaluate what constitutes a successful business model with economic and socio-ecological goals. Finally, you will acquire the competence to independently develop existing business models				
Prerequisites	None.				
Possible inclusion in curriculum	First or second semester				
Subject area	Compulsory elective area: "Social, Economic and Legal Aspects"				
Frequency	Yearly, currently in the winter semester				
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	SEC	Social Entrepreneurship Cases: Analyzing Social Businesses	2V + 2Ü	6LP	
		Total:	2V + 2Ü	6LP	
Examination	Term paper (Mark weighting 3/5) and presentation (Mark weighting 2/5).				
Student workload	 o 60 h Attendance time o 120 h Self-study and examination preparation SEC total: 180 h 				
Assignment to Curriculum	Business Administration (M.Sc.); Entrepreneurship & Digitalization (M.Sc.), DSMSE (M.Sc.)				

Module SPM: Sustainable polymer chemistry and polymer materials (DSMSE)

Responsibility	Chair of Macromolecular Chemistry II				
Content	The lecture will cover the basics of sustainability pillars, sustainable polymers from natural resources, biodegradable polymers, lightweight porous and bionic (biomimetic) polymer materials, green processes for the preparation of monomers, and polymers, recycling of polymers. The associated laboratory course will be performed in the macromolecular chemistry research groups or in collaboration with other polymer sustainability-related research groups.				
Qualification objective	Polymers contribute significantly to the three pillars of sustainability, which are environment, economy, and society. The students will be exposed to these three pillars of sustainability with the focus on the detailed knowledge about sustainability and sustainable processes in polymer chemistry, polymer applications, and their disposal. The laboratory course will provide the students a hand-on- experience and skills in sustainable polymer preparation procedures, processing to light-weight polymer objects, their structural, physical, chemical and mechanical properties, and use of the relevant polymer analytical techniques.				
Prerequisites	None				
Possible inclusion in curriculum	Second or third semester				
Subject area	Focus area: "Circular Economy & Sustainable Raw Materials"				
Frequency	Yearly in the summer semester				
Duration	1 semester				
Overview and credits	Identification	Course	SWS	LP	
	SPM	Sustainable polymer chemistry and polymer materials	2V + 3P	5LP	
		Total:	2V+3P	5LP	

0Examination	Portfolio examination: Written or oral exam (Mark weighting 1/2), Contribution in the form of practical course reports (Mark weighting 1/2)	
Student workload	 o 75 h Attendance time o 75 h Self-study and examination preparation SPM total: 150 h 	
Assignment to Curriculum	DSMSE (M.Sc.)	